CONTENTS

1. Introduction 116
2. Acknowledgments 117
3. List of Contributors 118
4. A Model of Endocrine Control of Bone Remodelling. 119
 HAROLD M. FROST, M.D.

5. Effect of Estrogen on Resorption of Chondro-osseous Complex in the Rat. 171
 H. M. FROST, M.D., H. ROTH, M.D., A. R. VILLANUEVA, B.S.,
 AND S. STANISAVLJEVIC, M.D.

6. Effect of Adrenal Corticoids on Lamellar Bone Formation Rate in
 Rat Diaphysis. 179
 S. STANISAVLJEVIC, M.D., H. ROTH, M.D., A. R. VILLANUEVA, B.S.,
 AND H. M. FROST, M.D.

7. Effect of Adrenal Corticoids on Chondro-osseous Complex Osteoclasia. 185
 H. M. FROST, M.D., S. STANISAVLJEVIC, M.D., A. R.
 VILLANUEVA, B.S., AND H. ROTH, M.D.

8. Effect of Thyroxine on Chondro-osseous Complex Resorption in the Rat. 199
 H. M. FROST, A. R. VILLANUEVA, B.S., S. STANISAVLJEVIC, M.D.,
 AND H. ROTH, M.D.

9. Effect of Marsilid on Diaphyseal Lamellar Rabbit Bone. 209
 ZIYA SEZGIN, M.D., DAVID BOSWORTH, M.D., AND
 HAROLD M. FROST, M.D.

10. Qualitative Method for Measuring Osteoclastic Activity. 217
 HAROLD M. FROST, M.D., ANTHONY R. VILLANUEVA, B.S., AND
 HERBERT ROTH, M.D.

 Preliminary Report. 229
 HAROLD M. FROST, M.D., AND A. R. VILLANUEVA, B.S.

12. Physical Characteristics of Bone: Shrinkage and Hydration. 237
 HAROLD M. FROST, M.D.

13. Resection of Metatarsal Heads for Painful and Intractable Plantar
 Callosities. Report of Ten Years Experience. 241
 LEO VAN HERPE, M.D., AND C. LESLIE MITCHELL, M.D.

(Contents continued on inside back cover)
Earlier papers of this series appear as June 1960 Part II and March 1961 Part II of the BULLETIN.

For the most part the work presented in these papers was supported by Grant No. A-4186 Surg., National Institutes of Health, Grant No. 293, Henry Ford Hospital, and a grant from the Orthopedic Research and Education Foundation.
INTRODUCTION

TWO CURRENT, subtle changes reorient the study of bone away from the classical emphasis on description and terminology. These changes are seldom accorded overt homage in the literature with its often dessicated compilation of fact and method.

The first change: realization that the nature of and rates at which dynamic events occur are more important than the definition of structure. The ceaseless change characterizing bone physiology from macroscopic to molecular levels of organization was long hidden by the structure itself. In the last two generations, now coming to fruition, realization has dawned of the importance of biological kinetics. In the wake of this dawning came the evolution of study of morphology to a means of deducing the kinetics preceding the moment of observation. Thus relegated to the status of research tool rather than elevated on its own pedestal, morphology has evoked fresh interest and power and become the subject of a progressively astute and determined attack by investigators from many disciplines.

The second change: for hundreds of years it was perfectly obvious that bone is unique and exists apart from the soft tissue organs. This view made the study of bone a limited, highly specialized field apart from the main stream of biology.

Now, rather suddenly, bone's claims to uniqueness are crumbling to dust. In common with the soft tissues bone remodels, its cells live a finite and determinable lifetime, its cellular progenitors are affected by opposing and determinable rate controlling mechanisms, its existing cells exhibit progressive changes in function with age and both progenitor and existing cells are subject to a fascinating and possibly epochal superintegration of balance and balance control mechanisms.

Bone does possess unique physical and physiological characteristics. One of these unique features is termed by us the ledger function: biological kinetic processes write a record in bone of what happened in the past. The symbology of this biological shorthand may be translated by suitable study. By reading from this ledger, by correlating, by finding and testing new ways of integrating old facts, understanding increases.

For the above and other reasons the study of bone is emerging as a powerful tool for investigating some basic aspects of human biology. For example, bone yields remarkable insights into the nature of the human aging process, the nature of human endocrinological control integration, the mechanisms of endocrine action, the changes with age in the rates of generation of new and differentiated tissue, the changes with age in the functional competence of single cells, the nature of the space polarizing mechanisms which "instruct" cellular function in three-dimensional space.
In reading the ensuing articles remember these things:

First, most in one way or another adorn the pedestal of biological control, using study of form as a means of detecting the presence and observing the action of these controls. While some mathematics creep in, more will appear in future work following the lines suggested by pioneer thought of others. See Weiss and Kavanau (J. Gen. Physiol. 41:1-47, 1957); Szilard (Proc. Nat. Acad. Sci. 45:30-45, 1959); Roston (Bull. Math. Biophy. 21:271-282, 1959).

Second, our work involves the proper phrasing of some question; once phrased, the question is then put to our oracle of biology: bone. The depth and scope of our questions increase as our own educations and our knowledge of our oracle increase. Of necessity this process involves first an attention to structural detail, second an interpretation of the kinetic mechanism that produced it, third an integration with other facts to arrive at an hypothesis, and last the formulation of the question, the necessary result of the hypothesis, which is then put to human bone to determine whether we are still anchored to reality — or adrift in a puddle of fantasy.

Third, orthopedic surgery has a reputation among nonorthopedists for being a specialty exercising the muscle and memory — and in that order — but not the cortical integrative faculties. Work from many laboratories, this among them, should sufficiently exercise the scope of educational background and powers of comprehension to dispel this image from an objective mind. While it may be easy to become a plebeian orthopedist, becoming an excellent, well grounded and perceptive one is a challenge worthy of the best minds entering medicine. Indeed few living men can claim successful stalk of this game and few entering medicine can bring to their work the courage, industry, objectivity, and intellect necessary for a successful stalk. To too many the "good life" translates into assured good possessions rather than into the highly uncertain conquest of a medical Everest.

However, for those newcomers to medicine in whom this taunt and challenge fans some responsive ember: good hunting!

Harold M. Frost, M.D.
Department of Orthopedic Surgery

Acknowledgments

Harold M. Frost, M.D., A. R. Villanueva, M.S., H. Roth, M.D., and S. Stanisavljevic, M.D.

The present and past work of the Henry Ford Hospital Orthopedic Research Laboratory has been possible through the active encouragement and help of a number of people who set the atmosphere in which we work. We take this opportunity to express our appreciation of their generosity in concrete form.

C. L. Mitchell, M.D., Chief, Department of Orthopedic Surgery. His realization of the potential benefits of a research program to the institution is the reason for the Laboratory's existence. We sincerely hope the judgment of time justifies his faith in the idea and in our efforts.
Joseph Fleming, M.D. and Campbell White, M.D., Associate Surgeons of the Department of Orthopedic Surgery. These individuals, with Dr. Mitchell, have religiously forwarded bone obtained from the operating room for the use of the laboratory. Priceless material has been obtained in this manner which otherwise would be irrevocably lost.

The Department of Pathology, especially Robert Horn, M.D., the department head, and Gerald Fine, M.D., associate pathologist. With their help the laboratory has been able to compile a library of undecalcified sections which, as of this writing, exceeds 12,000 sections from more than 700 patients. There are bones labelled with tetracyclines during life from over 250 human beings, a source of material unmatched anywhere and one which may never be matched again. From this material it has been possible to observe, measure, or detect phenomena never before dealt with in man.

Mrs. Bertha Hentschel and Miss Edna Bosanko, who spent countless hours typing and retyping our labored compositions with their endless lists of references.

Joseph Godfrey, M.D., Frank Potts, M.D., Charles Bechtol, M.D., David Bosworth, M.D., and Ziya Sezgin, M.D., for help, patience, and faith when skies were not very clear.

We are indebted to the National Institute of Health for their Grant: Surg. A-4186; to the Orthopedic Research and Education Foundation for the grant; and to Grant #293, Henry Ford Hospital. We hope that these donors feel their contributions have been justified. We feel indebted to Harold Boyd, M.D., and particularly hope that he feels his judgment vindicated.

The illustrative material in this and preceding publications is the result of the efforts of Mssrs. Kroll and Cooper and staff, Department of Photography; Mr. Bowden for superb photomicrographs; and Mr. Gray of the Department of Medical Illustrations for the drawings, figures, and graphs.

We thank Mssrs. G. Scimeni, R. Hattner, and P. Santoro for a rewarding personal association and for literally thousands of beautiful sections of undecalcified bone, providing us with a collection of material which, as already mentioned, may never again be duplicated.

LIST OF CONTRIBUTORS

HAROLD M. FROST, M.D., Associate Surgeon, Department of Orthopedic Surgery.

C. LESLIE MITCHELL, M.D., Chief Surgeon, Department of Orthopedic Surgery.

STANKO STANSAVLJEVIC, M.D., Resident, Department of Orthopedic Surgery.

HERBERT ROTH, M.D., Intern, Henry Ford Hospital.

LEO VAN HERPE, M.D., Resident, Department of Orthopedic Surgery.

ZIYA SEZGIN, M.D., Ankara, Turkey.

ANTHONY R. VILLANUEVA, B.S., Research Assistant, Orthopedic Research Laboratory.

FILIPPO SANTORO, B.A., Research Assistant, Orthopedic Research Laboratory.