Title

Dendrimer-Based Responsive MRI Contrast Agents (G1-G4) for Biosensor Imaging of Redundant Deviation in Shifts (BIRDS).

Document Type

Article

Publication Date

12-16-2015

Publication Title

Bioconjugate chemistry

Abstract

Biosensor imaging of redundant deviation in shifts (BIRDS) is a molecular imaging platform for magnetic resonance that utilizes unique properties of low molecular weight paramagnetic monomers by detecting hyperfine-shifted nonexchangeable protons and transforming the chemical shift information to reflect its microenvironment (e.g., via temperature, pH, etc.). To optimize translational biosensing potential of BIRDS we examined if this detection scheme observed with monomers can be extended onto dendrimers, which are versatile and biocompatible macromolecules with modifiable surface for molecular imaging and drug delivery. Here we report on feasibility of paramagnetic dendrimers for BIRDS. The results show that BIRDS is resilient with paramagnetic dendrimers up to the fourth generation (i.e., G1-G4), where the model dendrimer and chelate were based on poly(amido amine) (PAMAM) and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA(4-)) complexed with thulium ion (Tm(3+)). Temperature sensitivities of two prominent signals of Gn-PAMAM-(TmDOTA(-))x (where n = 1-4, x = 6-39) were comparable to that of prominent signals in TmDOTA(-). Transverse relaxation times of the coalesced nonexchangeable protons on Gn-PAMAM-(TmDOTA(-))x were relatively short to provide signal-to-noise ratio that was comparable to or better than that of TmDOTA(-). A fluorescent dye, rhodamine, was conjugated to a G2-PAMAM-(TmDOTA)12 to create a dual-modality nanosized contrast agent. BIRDS properties of the dendrimer were unaltered with rhodamine conjugation. Purposely designed paramagnetic dendrimers for BIRDS in conjunction with novel macromolecular surface modification for functional ligands/drugs could potentially be used for biologically compatible theranostic sensors.

Medical Subject Headings

Biosensing Techniques; Contrast Media; Dendrimers; Magnetic Resonance Imaging; Organometallic Compounds; Thulium

PubMed ID

26497087

Volume

26

Issue

12

First Page

2315

Last Page

2323

Share

COinS