Early cost estimating model for new bioabsorbable orthopedic implant candidates: A theoretical study

Document Type


Publication Date


Publication Title

J Mech Behav Biomed Mater


An early health technology assessment (HTA) study was performed to assess the need for developing a new bioabsorbable implant for the treatment of specific orthopedic injuries. The Anterior Cruciate Ligament Reconstruction (ACLR) procedure was selected based on the need and potential impact of bioabsorbable implants in the treatment of ACL injuries. The economic model considers the possible health events after an ACLR (failures and other complications such as stiffness and pain). A decision tree approach was used, and several sensitivity analyses were performed using a Monte Carlo simulation. A cost estimating model was applied comparatively for currently available metal and bioabsorbable implants against a potential new bioabsorbable implant with improved performance. A reduction in stiffness and pain symptoms were considered as targets for these new implants performance, with reduced inflammation resulting from the use of materials with appropriate biological and mechanical properties. The current study estimates that, under the assumptions made, the introduction of a new bioabsorbable implant in ACLR surgeries may generate yearly cost savings. The model estimates positive cost-benefits of the new implant when it reduces the probability of failure by more than 30%, or reduces at least 14% the probability of complications of an inflammatory nature. The development of a new bioabsorbable orthopedic implant for ACLR is encouraged by this study identifying the need for new bioabsorbable implants with improved biological and mechanical performance. The results of this early HTA have made it possible to anticipate design needs and objectives for the research and development of new orthopedic bioabsorbable implants.

Medical Subject Headings

Absorbable Implants; Anterior Cruciate Ligament; Anterior Cruciate Ligament Reconstruction; Bone Screws; Models, Theoretical

PubMed ID




First Page


Last Page