Numerical Simulations of MitraClip Placement: Clinical Implications

Document Type


Publication Date


Publication Title

Sci Rep


Mitral regurgitation (MR) is the most common type of valvular heart disease in patients over the age of 75 in the US. Despite the prevalence of mitral regurgitation in the elderly population, however, almost half of patients identified with moderate-severe MR are turned down for traditional open heart surgery due to frailty and other existing co-morbidities. MitraClip (MC) is a recent percutaneous approach to treat mitral regurgitation by placement of MC in the center of the mitral valve to reduce MR. There are currently no computational simulations to elucidate the role of MC on both the fluid and solid mechanics of the mitral valve. Here, we use the Smoothed Particle Hydrodynamics (SPH) approach to study various positional placements of the MC in the mitral valve and its impact on reducing MR. SPH is a particle based (meshless) approach that handles flow through narrow regions quite efficiently. Fluid and surrounding anatomical structure interactions is handled via contact and hence can be used for studying fluid-structure interaction problems such as blood flow with surrounding tissues/structure. This method is available as part of the Abaqus/Explicit solver. Regurgitation was initiated by removing targeted chordae tendineae that are attached to specified leaflets of the mitral valve and, subsequently, MC implants are placed in various locations, starting from the region near where the chordae tendineae were removed and moving away from the location towards the center of the valve. The MC implant location closest to where the chordae tendineae were removed showed the least amount of residual MR post-clip implantation amongst all other locations of MC implant considered. These findings have important implications for strategic placement of the MC depending on the etiology of MR to optimize clinical outcome.

PubMed ID






First Page


Last Page