Document Type

Article

Publication Date

10-1-2022

Publication Title

Computer methods and programs in biomedicine

Abstract

BACKGROUND AND OBJECTIVE: Clinical concern for acute coronary syndrome (ACS) is one of emergency medicine's most common patient encounters. This study aims to develop an ensemble learning-driven framework as a diagnostic support tool to prevent misdiagnosis.

METHODS: We obtained extensive clinical electronic health data on patient encounters with clinical concerns for ACS from a large urban emergency department (ED) between January 2017 and August 2020. We applied an analytical framework equipped with many well-developed algorithms to improve the data quality by addressing missing values, dimensionality reduction, and data imbalance. We trained ensemble learning algorithms to classify patients with ACS or non-ACS etiologies of their symptoms. We used performance evaluation metrics such as accuracy, sensitivity, precision, F1-score, and the area under the receiver operating characteristic (AUROC) to measure the model's performance.

RESULTS: The analysis included 31,228 patients, of whom 563 (1.8%) had ACS and 30,665 (98.2%) had alternative diagnoses. Eleven features, including systolic blood pressure, brain natriuretic peptide, chronic heart disease, coronary artery disease, creatinine, glucose, heart attack, heart rate, nephrotic syndrome, red cell distribution width, and troponin level, are reported as significantly contributing risk factors. The proposed framework successfully classifies these cohorts with sensitivity and AUROC as high as 86.3% and 93.3%. Our proposed model's accuracy, precision, specificity, Matthew's correlation coefficient, and F1-score were 85.7%, 86.3%, 93%, 80%, and 86.3%, respectively.

CONCLUSION: Our proposed framework can identify early patients with ACS through further refinement and validation.

PubMed ID

36037605

Volume

225

First Page

107080

Last Page

107080

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.