Title

Akt plays differential roles during the life cycles of acute and persistent murine norovirus strains in macrophages

Document Type

Article

Publication Date

11-17-2021

Publication Title

Journal of virology

Abstract

Akt (Protein kinase B) is a key signaling protein in eukaryotic cells that controls many cellular processes such as glucose metabolism and cell proliferation for survival. As obligate intracellular pathogens, viruses modulate host cellular processes, including Akt signaling, for optimal replication. The mechanisms by which viruses modulate Akt and the resulting effects on the infectious cycle differ widely depending on the virus. In this study, we explored the effect of Akt serine 473 phosphorylation (p-Akt) during murine norovirus (MNV) infection. p-Akt increased during infection of murine macrophages with acute MNV-1 and persistent CR3 and CR6 strains. Inhibition of Akt with MK2206, an inhibitor of all three isoforms of Akt (Akt1/2/3), reduced infectious virus progeny of all three virus strains. This reduction was due to decreased viral genome replication (CR3), defective virus assembly (MNV-1), or diminished cellular egress (CR3 and CR6) in a virus strain-dependent manner. Collectively, our data demonstrate that Akt activation increases in macrophages during the later stages of the MNV infectious cycle, which may enhance viral infection in unique ways for different virus strains. The data, for the first time, indicate a role for Akt signaling in viral assembly and highlight additional phenotypic differences between closely related MNV strains.

PubMed ID

34787460

ePublication

ePub ahead of print

First Page

0192321

Last Page

0192321

Share

COinS