Title

Castration-resistant prostate cancer: Androgen receptor inactivation induces telomere DNA damage, and damage response inhibition leads to cell death.

Document Type

Article

Publication Date

1-1-2019

Publication Title

PLoS One

Abstract

Telomere stability is important for cell viability, as cells with telomere DNA damage that is not repaired do not survive. We reported previously that androgen receptor (AR) antagonist induces telomere DNA damage in androgen-sensitive LNCaP prostate cancer cells; this triggers a DNA damage response (DDR) at telomeres that includes activation of ATM, and blocking ATM activation prevents telomere DNA repair and leads to cell death. Remarkably, AR antagonist induces telomere DNA damage and triggers ATM activation at telomeres also in 22Rv1 castration-resistant prostate cancer (CRPC) cells that are not growth inhibited by AR antagonist. Treatment with AR antagonist enzalutamide (ENZ) or ATM inhibitor (ATMi) by itself had no effect on growth in vitro or in vivo, but combined treatment with ENZ plus ATMi significantly inhibited cell survival in vitro and tumor growth in vivo. By inducing telomere DNA damage and activating a telomere DDR, an opportunity to inhibit DNA repair and promote cell death was created, even in CRPC cells. 22Rv1 cells express both full-length AR and AR splice variant AR-V7, but full-length AR was found to be the predominant form of AR associated with telomeres and required for telomere stability. Although 22Rv1 growth of untreated 22Rv1 cells appears to be driven by AR-V7, it is, ironically, expression of full-length AR that makes them sensitive to growth inhibition by combined treatment with ENZ plus ATMi. Notably, this combined treatment approach to induce telomere DNA damage and inhibit the DDR was effective in inducing cell death also in other CRPC cell lines (LNCaP/AR and C4-2B). Thus, the use of ENZ in combination with a DDR inhibitor, such as ATMi, may be effective in prolonging disease-free survival of patients with AR-positive metastatic CRPC, even those that co-express AR splice variant.

PubMed ID

31083651

Volume

14

Issue

5

First Page

e0211090

Share

COinS