Mesenchymal Stem Cell-Derived Exosomes Provide Neuroprotection and Improve Long-Term Neurologic Outcomes in a Swine Model of Traumatic Brain Injury and Hemorrhagic Shock

Document Type


Publication Date


Publication Title

Journal of neurotrauma


Combined traumatic brain injury (TBI) and hemorrhagic shock (HS) remains a leading cause of preventable death worldwide. Mesenchymal stem cell-derived exosomes have demonstrated promise in small animal models of neurologic injury. To investigate the effects of exosome treatment in a clinically realistic large animal model, Yorkshire swine underwent TBI and HS. Animals were maintained in shock for 2 h before resuscitation with normal saline (NS). Animals were then resuscitated either with NS (3 x volume of shed blood) or with the same volume of NS with delayed exosome administration (1 x 10(13) particles/4 mL) (n = 5/cohort). Exosomes were administered 9 h post-injury, and on post-injury days (PID) 1, 5, 9, and 13. Neurologic severity scores (NSS) were assessed for 30 days, and neurocognitive functions were objectively measured. Exosome-treated animals had significantly lower NSS (p < 0.05) during the first five days of recovery. Exosome-treated animals also had a significantly shorter time to complete neurologic recovery (NSS = 0) compared with animals given NS alone (days to recovery: NS = 16.8 +/- 10.6; NS + exosomes = 5.6 +/- 2.8; p = 0.03). Animals treated with exosomes initiated neurocognitive testing earlier (days to initiation: NS = 9.6 +/- 0.5 vs. NS + exosomes = 4.2 +/- 0.8; p = 0.008); however, no difference was seen in time to mastery of tasks. In conclusion, treatment with exosomes attenuates the severity of neurologic injury and allows for faster neurologic recovery in a clinically realistic large animal model of TBI and HS.

PubMed ID






First Page


Last Page