Document Type

Article

Publication Date

3-1-2021

Publication Title

Experimental neurology

Abstract

Cortical injury, such as stroke, causes neurotoxic cascades that lead to rapid death and/or damage to neurons and glia. Axonal and myelin damage in particular, are critical factors that lead to neuronal dysfunction and impair recovery of function after injury. These factors can be exacerbated in the aged brain where white matter damage is prevalent. Therapies that can ameliorate myelin damage and promote repair by targeting oligodendroglia, the cells that produce and maintain myelin, may facilitate recovery after injury, especially in the aged brain where these processes are already compromised. We previously reported that a novel therapeutic, Mesenchymal Stem Cell derived extracellular vesicles (MSC-EVs), administered intravenously at both 24 h and 14 days after cortical injury, reduced microgliosis (Go et al. 2019), reduced neuronal pathology (Medalla et al. 2020), and improved motor recovery (Moore et al. 2019) in aged female rhesus monkeys. Here, we evaluated the effect of MSC-EV treatment on changes in oligodendrocyte maturation and associated myelin markers in the sublesional white matter using immunohistochemistry, confocal microscopy, stereology, qRT-PCR, and ELISA. Compared to vehicle control monkeys, EV-treated monkeys showed a reduction in the density of damaged oligodendrocytes. Further, EV-treatment was associated with enhanced myelin maintenance, evidenced by upregulation of myelin-related genes and increases in actively myelinating oligodendrocytes in sublesional white matter. These changes in myelination correlate with the rate of motor recovery, suggesting that improved myelin maintenance facilitates this recovery. Overall, our results suggest that EVs act on oligodendrocytes to support myelination and improves functional recovery after injury in the aged brain. SIGNIFICANCE: We previously reported that EVs facilitate recovery of function after cortical injury in the aged monkey brain, while also reducing neuronal pathology (Medalla et al. 2020) and microgliosis (Go et al. 2019). However, the effect of injury and EVs on oligodendrocytes and myelination has not been characterized in the primate brain (Dewar et al. 1999; Sozmen et al. 2012; Zhang et al. 2013). In the present study, we assessed changes in myelination after cortical injury in aged monkeys. Our results show, for the first time, that MSC-EVs support recovery of function after cortical injury by enhancing myelin maintenance in the aged primate brain.

PubMed ID

33264634

Volume

337

First Page

113540

Last Page

113540

Share

COinS