Document Type

Article

Publication Date

4-5-2022

Publication Title

The Journal of the American Academy of Orthopaedic Surgeons

Abstract

Bone marrow stromal cells are regulated by the chemical and physical features of a biomaterial surface. When grown on titanium (Ti) and Ti alloy surfaces, such as titanium-aluminum-vanadium, with specific topographies that mimic the microscale, mesoscale, and nanoscale features of an osteoclast resorption pit, they undergo a rapid change in cell shape to assume a columnar morphology typical of a secretory osteoblast. These cells exhibit markers associated with an osteoblast phenotype, including osteocalcin and osteopontin, and they secrete factors associated with osteogenesis, including bone morphogenetic protein 2, vascular endothelial growth factor, and neurotrophic semaphorins. The pathway involves a shift in integrin expression from α5β1 to α2β1 and signaling by Wnt5a rather than Wnt3a. Conditioned media from these cultures can stimulate vasculogenesis by human endothelial cells and osteoblastic differentiation of marrow stromal cells not grown on the biomimetic substrate, suggesting that the surface could promote osteogenesis in vivo through similar mechanisms. In vivo studies using a variety of animal models confirm that implants with biomimetic surfaces result in improved osseointegration compared with Ti implants with smooth surfaces, as do meta-analyses comparing clinical performance of implant surface topographies.

PubMed ID

35383608

ePublication

ePub ahead of print

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.