Implementation of a novel algorithm for generating synthetic CT images from magnetic resonance imaging data sets for prostate cancer radiation therapy

Document Type


Publication Date


Publication Title

International journal of radiation oncology, biology, physics


PURPOSE: To describe and evaluate a method for generating synthetic computed tomography (synCT) images from magnetic resonance simulation (MR-SIM) data for accurate digitally reconstructed radiograph (DRR) generation and dose calculations in prostate cancer radiation therapy.

METHODS AND MATERIALS: A retrospective evaluation was performed in 9 prostate cancer patients who had undergone MR-SIM in addition to CT simulation (CT-SIM). MR-SIM data were used to generate synCT images by using a novel, voxel-based weighted summation approach. A subset of patients was used for weight optimization, and the number of patients to use during optimization was determined. Hounsfield unit (HU) differences between CT-SIM and synCT images were analyzed via mean absolute error (MAE). Original, CT-based treatment plans were mapped onto synCTs. DRRs were generated, and agreement between CT and synCT-generated DRRs was evaluated via Dice similarity coefficient (DSC). Dose was recalculated, and dose-volume metrics and gamma analysis were used to evaluate resulting treatment plans.

RESULTS: Full field-of-view synCT MAE across all patients was 74.3 ± 10.9 HU with differences from CTs of 2.0 ± 8.1 HU and 11.9 ± 46.7 HU for soft tissue structures (prostate, bladder, and rectum) and femoral bones, respectively. Calculated DSCs for anterior-posterior and lateral DRRs were 0.90 ± 0.04 and 0.92 ± 0.05, respectively. Differences in D99%, mean dose, and maximum dose to the clinical target volume from CT-SIM dose calculations were 0.75% ± 0.35%, 0.63% ± 0.34%, and 0.54% ± 0.33%, respectively, for synCT-generated plans. Gamma analysis (2%/2 mm dose difference/distance to agreement) revealed pass rates of 99.9% ± 0.1% (range, 99.7%-100%).

CONCLUSION: Generated synCTs enabled accurate DRR generation and dose computation for prostate MR-only simulation. Dose recalculated on synCTs agreed well with original planning distributions. Further validation using a larger patient cohort is warranted.

Medical Subject Headings

Algorithms; Humans; Magnetic Resonance Imaging; Male; Prostatic Neoplasms; Radiotherapy Dosage; Radiotherapy Planning, Computer-Assisted; Retrospective Studies; Tomography, X-Ray Computed

PubMed ID






First Page


Last Page