Document Type


Publication Date


Publication Title

Journal of applied clinical medical physics [electronic resource] / American College of Medical Physics


PURPOSE: We performed quantitative analysis of differences in deformable image registration (DIR) and deformable dose accumulation (DDA) computed on CBCT datasets reconstructed using the standard (Feldkamp-Davis-Kress: FDK_CBCT) and a novel iterative (iterative_CBCT) CBCT reconstruction algorithms.

METHODS: Both FDK_CBCT and iterative_CBCT images were reconstructed for 323 fractions of treatment for 10 prostate cancer patients. Planning CT images were deformably registered to each CBCT image data set. After daily dose distributions were computed, they were mapped to planning CT to obtain deformed doses. Dosimetric and image registration results based CBCT images reconstructed by two algorithms were compared at three levels: (A) voxel doses over entire dose calculation volume, (B) clinical constraint results on targets and sensitive structures, and (C) contours propagated to CBCT images using DIR results based on three algorithms (SmartAdapt, Velocity, and Elastix) were compared with manually delineated contours as ground truth.

RESULTS: (A) Average daily dose differences and average normalized DDA differences between FDK_CBCT and iterative_CBCT were ≤1 cGy. Maximum daily point dose differences increased from 0.22 ± 0.06 Gy (before the deformable dose mapping operation) to 1.33 ± 0.38 Gy after the deformable dose mapping. Maximum differences of normalized DDA per fraction were up to 0.80 Gy (0.42 ± 0.19 Gy). (B) Differences in target minimum doses were up to 8.31 Gy (-0.62 ± 4.60 Gy) and differences in critical structure doses were 0.70 ± 1.49 Gy. (C) For mapped prostate contours based on iterative_CBCT (relative to standard FDK_CBCT), dice similarity coefficient increased by 0.10 ± 0.09 (p < 0.0001), mass center distances decreased by 2.5 ± 3.0 mm (p < 0.00005), and Hausdorff distances decreased by 3.3 ± 4.4 mm (p < 0.00015).

CONCLUSIONS: The new iterative CBCT reconstruction algorithm leads to different mapped volumes of interest, deformed and cumulative doses than results based on conventional FDK_CBCT.

Medical Subject Headings

Algorithms; Cone-Beam Computed Tomography; Humans; Image Processing, Computer-Assisted; Male; Radiometry; Radiotherapy Planning, Computer-Assisted; Spiral Cone-Beam Computed Tomography

PubMed ID



ePub ahead of print





First Page


Last Page




To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.