Document Type


Publication Date


Publication Title

IEEE Access


Reliable early prediction of aneurysm rupture can greatly help neurosurgeons to treat aneurysms at the right time, thus saving lives as well as providing significant cost reduction. Most of the research efforts in this respect involve statistical analysis of collected data or simulation of hemodynamic factors to predict the risk of aneurysmal rupture. Whereas, morphological analysis of cerebral angiogram images for locating and estimating unruptured aneurysms is rarely considered. Since digital subtraction angiography (DSA) is regarded as a standard test by the American Stroke Association and American College of Radiology for identification of aneurysm, this paper aims to perform morphological analysis of DSA to accurately detect saccular aneurysms, precisely determine their sizes, and estimate the probability of their ruptures. The proposed diagnostic framework, intracranial saccular aneurysm detection and quantification, first extracts cerebrovascular structures by denoising angiogram images and delineates regions of interest (ROIs) by using watershed segmentation and distance transformation. Then, it identifies saccular aneurysms among segmented ROIs using multilayer perceptron neural network trained upon robust Haralick texture features, and finally quantifies aneurysm rupture by geometrical analysis of identified aneurysmic ROI. De-identified data set of 59 angiograms is used to evaluate the performance of algorithms for aneurysm detection and risk of rupture quantification. The proposed framework achieves high accuracy of 98% and 86% for aneurysm classification and quantification, respectively.



First Page


Last Page