Document Type

Article

Publication Date

3-17-2022

Publication Title

Urologic oncology

Abstract

OBJECTIVE: To examine the ability of machine learning methods to predict upgrading of Gleason score on confirmatory magnetic resonance imaging-guided targeted biopsy (MRI-TB) of the prostate in candidates for active surveillance.

SUBJECTS AND METHODS: Our database included 592 patients who received prostate multiparametric magnetic resonance imaging in the evaluation for active surveillance. Upgrading to significant prostate cancer on MRI-TB was defined as upgrading to G 3+4 (definition 1 - DF1) and 4+3 (DF2). Machine learning classifiers were applied on both classification problems DF1 and DF2.

RESULTS: Univariate analysis showed that older age and the number of positive cores on pre-MRI-TB were positively correlated with upgrading by DF1 (P-value ≤ 0.05). Upgrading by DF2 was positively correlated with age and the number of positive cores and negatively correlated with body mass index. For upgrading prediction, the AdaBoost model was highly predictive of upgrading by DF1 (AUC 0.952), while for prediction of upgrading by DF2, the Random Forest model had a lower but excellent prediction performance (AUC 0.947).

CONCLUSION: We show that machine learning has the potential to be integrated in future diagnostic assessments for patients eligible for AS. Training our models on larger multi-institutional databases is needed to confirm our results and improve the accuracy of these models' prediction.

PubMed ID

35307289

ePublication

ePub ahead of print

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.