Inducible expression quantitative trait locus analysis of the MUC5AC gene in asthma in urban populations of children
Recommended Citation
Altman MC, Flynn K, Rosasco MG, Dapas M, Kattan M, Lovinsky-Desir S, O'Connor GT, Gill MA, Gruchalla RS, Liu AH, Pongracic JA, Khurana Hershey GK, Zoratti EM, Teach SJ, Rastrogi D, Wood RA, Bacharier LB, LeBeau P, Gergen PJ, Togias A, Busse WW, Presnell S, Gern JE, Ober C, and Jackson DJ. Inducible expression quantitative trait locus analysis of the MUC5AC gene in asthma in urban populations of children. J Allergy Clin Immunol 2021.
Document Type
Article
Publication Date
5-18-2021
Publication Title
The Journal of allergy and clinical immunology
Abstract
BACKGROUND: Mucus plugging can worsen asthma control, lead to reduced lung function and fatal exacerbations. MUC5AC is the secretory mucin implicated in mucus plugging, and MUC5AC gene expression has been associated with development of airway obstruction and asthma exacerbations in urban children with asthma. However, the genetic determinants of MUC5AC expression are not established.
OBJECTIVE: To assess single-nucleotide polymorphisms (SNPs) that influence MUC5AC expression and relate to pulmonary functions in childhood asthma.
METHODS: We used RNA-sequencing data from upper airway samples and performed cis-expression quantitative trait loci (eQTL) and allele specific expression (ASE) analyses in two cohorts of predominantly Black and Hispanic urban children, a high asthma-risk birth cohort and an exacerbation-prone asthma cohort. We further investigated inducible MUC5AC eQTLs during incipient asthma exacerbations. We tested significant eQTLs SNPs for associations with lung function measurements and investigated their functional consequences in DNA regulatory databases.
RESULTS: We identified two independent groups of SNPs in the MUC5AC gene that were significantly associated with MUC5AC expression. Moreover, these SNPs showed stronger eQTL associations with MUC5AC expression during asthma exacerbations, consistent with inducible expression. SNPs in one group also showed significant association with decreased pulmonary functions. These SNPs included multiple EGR1 transcription factor binding sites suggesting a mechanism of effect.
CONCLUSIONS: These findings demonstrate the applicability of organ specific RNA-sequencing data to determine genetic factors contributing to a key disease pathway. Specifically, they suggest important genetic variations that may underlie propensity to mucus plugging in asthma and could be important in targeted asthma phenotyping and disease management strategies.
PubMed ID
34019912
ePublication
ePub ahead of print