"Preventing Prolonged Times to Awakening While Mitigating the Risk of P" by Franklin Dexter, Richard H. Epstein et al.
 

Preventing Prolonged Times to Awakening While Mitigating the Risk of Patient Awareness: Gas Man Computer Simulations of Sevoflurane Consumption From Brief, High Fresh Gas Flow Before the End of Surgery

Document Type

Article

Publication Date

3-1-2024

Publication Title

Cureus

Abstract

Prolonged times to tracheal extubation are associated with adverse patient and economic outcomes. We simulated awakening patients from sevoflurane after long-duration surgery at 2% end-tidal concentration, 1.0 minimum alveolar concentration (MAC) in a 40-year-old. Our end-of-surgery target was 0.5 MAC, the Michigan Awareness Control Study's threshold for intraoperative alerts. Consider an anesthetist who uses a 1 liter/minute gas flow until surgery ends. During surgical closure, the inspired sevoflurane concentration is reduced from 2.05% to 0.62% (i.e., MAC-awake). The estimated time to reach 0.5 MAC is 28 minutes. From a previous study, 28 minutes exceeded ≥95% of surgical closure times for all 244 distinct surgical procedures (N=23,343 cases). Alternatively, the anesthetist uses 8 liters/minute gas flow with the vaporizer at MAC-awake for 1.8 minutes, which reduces the end-tidal concentration to 0.5 MAC. The anesthetist then increases the vaporizer to keep end-tidal 0.5 MAC until the surgery ends. An additional simulation shows that, compared with simulated end-tidal agent feedback control, this approach consumed 0.45 mL extra agent. Simulation results are the same for an 80-year-old patient. The extra 0.45 mL has a global warming potential comparable to driving 26 seconds at 40 kilometers (25 miles) per hour, comparable to route modification to avoid potential roadway hazards.

PubMed ID

38586680

Volume

16

Issue

3

First Page

55626

Last Page

55626

Share

COinS