Comparison of machine learning techniques to predict all-cause mortality using fitness data: the Henry ford exercIse testing (FIT) project
Recommended Citation
Sakr S, Elshawi R, Ahmed AM, Qureshi WT, Brawner CA, Keteyian SJ, Blaha MJ, Al-Mallah MH. Comparison of machine learning techniques to predict all-cause mortality using fitness data: the Henry ford exercIse testing (FIT) project. BMC Med Inform Decis Mak. Dec 19 2017;17(1):174.
Document Type
Article
Publication Date
12-19-2017
Publication Title
BMC medical informatics and decision making [electronic resource]
Abstract
BACKGROUND: Prior studies have demonstrated that cardiorespiratory fitness (CRF) is a strong marker of cardiovascular health. Machine learning (ML) can enhance the prediction of outcomes through classification techniques that classify the data into predetermined categories. The aim of this study is to present an evaluation and comparison of how machine learning techniques can be applied on medical records of cardiorespiratory fitness and how the various techniques differ in terms of capabilities of predicting medical outcomes (e.g. mortality).
METHODS: We use data of 34,212 patients free of known coronary artery disease or heart failure who underwent clinician-referred exercise treadmill stress testing at Henry Ford Health Systems Between 1991 and 2009 and had a complete 10-year follow-up. Seven machine learning classification techniques were evaluated: Decision Tree (DT), Support Vector Machine (SVM), Artificial Neural Networks (ANN), Naïve Bayesian Classifier (BC), Bayesian Network (BN), K-Nearest Neighbor (KNN) and Random Forest (RF). In order to handle the imbalanced dataset used, the Synthetic Minority Over-Sampling Technique (SMOTE) is used.
RESULTS: Two set of experiments have been conducted with and without the SMOTE sampling technique. On average over different evaluation metrics, SVM Classifier has shown the lowest performance while other models like BN, BC and DT performed better. The RF classifier has shown the best performance (AUC = 0.97) among all models trained using the SMOTE sampling.
CONCLUSIONS: The results show that various ML techniques can significantly vary in terms of its performance for the different evaluation metrics. It is also not necessarily that the more complex the ML model, the more prediction accuracy can be achieved. The prediction performance of all models trained with SMOTE is much better than the performance of models trained without SMOTE. The study shows the potential of machine learning methods for predicting all-cause mortality using cardiorespiratory fitness data.
Medical Subject Headings
Adult; Aged; Cardiorespiratory Fitness; Classification; Datasets as Topic; Exercise Test; Female; Follow-Up Studies; Humans; Machine Learning; Male; Middle Aged; Mortality; Prognosis
PubMed ID
29258510
Volume
17
Issue
1
First Page
174
Last Page
174
Comments
© The Author(s). 2017original version available at 10.1186/s12911-017-0566-6
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.