Rapid Exclusion of COVID Infection With the Artificial Intelligence Electrocardiogram
Recommended Citation
Signorino J, Halamka J, Chennaiah Gari NR, Madathala RS, Platonov PG, Gul F, Janssens SP, Narayan S, Upadhyay GA, Alenghat FJ, Lahiri MK, Dujardin K, Hermel M, Dominic P, Turk-Adawi K, Asaad N, Svensson A, Fernandez-Aviles F, Esakof DD, Bartunek J, Noheria A, Sridhar AR, Lanza GA, Cohoon K, Padmanabhan D, Pardo Gutierrez JA, Sinagra G, Merlo M, Zagari D, Rodriguez Escenaro BD, Pahlajani DB, Loncar G, Vukomanovic V, Jensen HK, Farkouh ME, Luescher TF, Su Ping CL, Peters NS, and Friedman PA. Rapid Exclusion of COVID Infection With the Artificial Intelligence Electrocardiogram. Mayo Clin Proc 2021; 96(8):2081-2094.
Document Type
Article
Publication Date
8-1-2021
Publication Title
Mayo Clinic proceedings. Mayo Clinic
Abstract
OBJECTIVE: To rapidly exclude severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using artificial intelligence applied to the electrocardiogram (ECG).
METHODS: A global, volunteer consortium from 4 continents identified patients with ECGs obtained around the time of polymerase chain reaction-confirmed COVID-19 diagnosis and age- and sex-matched controls from the same sites. Clinical characteristics, polymerase chain reaction results, and raw electrocardiographic data were collected. A convolutional neural network was trained using 26,153 ECGs (33.2% COVID positive), validated with 3826 ECGs (33.3% positive), and tested on 7870 ECGs not included in other sets (32.7% positive). Performance under different prevalence values was tested by adding control ECGs from a single high-volume site.
RESULTS: The area under the curve for detection of acute COVID-19 infection in the test group was 0.767 (95% CI, 0.756 to 0.778; sensitivity, 98%; specificity, 10%; positive predictive value, 37%; negative predictive value, 91%). To more accurately reflect a real-world population, 50,905 normal controls were added to adjust the COVID prevalence to approximately 5% (2657/58,555), resulting in an area under the curve of 0.780 (95% CI, 0.771 to 0.790) with a specificity of 12.1% and a negative predictive value of 99.2%.
CONCLUSION: Infection with SARS-CoV-2 results in electrocardiographic changes that permit the artificial intelligence-enhanced ECG to be used as a rapid screening test with a high negative predictive value (99.2%). This may permit the development of electrocardiography-based tools to rapidly screen individuals for pandemic control.
Medical Subject Headings
Artificial Intelligence; COVID-19; Case-Control Studies; Electrocardiography; Humans; Predictive Value of Tests; Sensitivity and Specificity
PubMed ID
34353468
Volume
96
Issue
8
First Page
2081
Last Page
2094