NCOA5 Haploinsufficiency in Myeloid-Lineage Cells Sufficiently Causes Nonalcoholic Steatohepatitis and Hepatocellular Carcinoma
Recommended Citation
Zhang Y, Luo Y, Liu X, Kiupel M, Li A, Wang H, Mi QS, and Xiao H. NCOA5 Haploinsufficiency in Myeloid-Lineage Cells Sufficiently Causes Nonalcoholic Steatohepatitis and Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol 2023.
Document Type
Article
Publication Date
1-1-2024
Publication Title
Cell Mol Gastroenterol Hepatol
Abstract
BACKGROUND & AIMS: The nuclear receptor coactivator 5 (NCOA5) is a putative type 2 diabetes susceptibility gene. NCOA5 haploinsufficiency results in the spontaneous development of nonalcoholic fatty liver disease (NAFLD), insulin resistance, and hepatocellular carcinoma (HCC) in male mice; however, the cell-specific effect of NCOA5 haploinsufficiency in various types of cells, including macrophages, on the development of NAFLD and HCC remains unknown.
METHODS: Control and myeloid-lineage-specific Ncoa5 deletion (Ncoa5(ΔM/+)) mice fed a normal diet were examined for the development of NAFLD, nonalcoholic steatohepatitis (NASH), and HCC. Altered genes and signaling pathways in the intrahepatic macrophages of Ncoa5(ΔM/+) male mice were analyzed and compared with those of obese human individuals. The role of platelet factor 4 (PF4) in macrophages and the underlying mechanism by which PF4 affects NAFLD/NASH were explored in vitro and in vivo. PF4 expression in HCC patient specimens and prognosis was examined.
RESULTS: Myeloid-lineage-specific Ncoa5 deletion sufficiently causes spontaneous NASH and HCC development in male mice fed a normal diet. PF4 overexpression in Ncoa5(ΔM/+) intrahepatic macrophages is identified as a potent mediator to trigger lipid accumulation in hepatocytes by inducing lipogenesis-promoting gene expression. The transcriptome of intrahepatic macrophages from Ncoa5(ΔM/+) male mice resembles that of obese human individuals. High PF4 expression correlated with poor prognosis of HCC patients and increased infiltrations of M2 macrophages, regulatory T cells, and myeloid-derived suppressor cells in HCCs.
CONCLUSIONS: Our findings reveal a novel mechanism for the onset of NAFLD/NASH and HCC initiated by NCOA5-deficient macrophages, suggesting the NCOA5-PF4 axis in macrophages as a potential target for developing preventive and therapeutic interventions against NAFLD/NASH and HCC.
Medical Subject Headings
Humans; Male; Mice; Animals; Carcinoma, Hepatocellular; Non-alcoholic Fatty Liver Disease; Liver Neoplasms; Diabetes Mellitus, Type 2; Haploinsufficiency; Transcription Factors; Obesity; Nuclear Receptor Coactivators
PubMed ID
37734594
ePublication
ePub ahead of print
Volume
17
Issue
1
First Page
1
Last Page
27