Systemic Anticancer Therapy and Thromboembolic Outcomes in Hospitalized Patients With Cancer and COVID-19
Recommended Citation
Gulati S, Hsu CY, Shah S, Shah PK, Zon R, Alsamarai S, Awosika J, El-Bakouny Z, Bashir B, Beeghly A, Berg S, de-la-Rosa-Martinez D, Doroshow DB, Egan PC, Fein J, Flora DB, Friese CR, Fromowitz A, Griffiths EA, Hwang C, Jani C, Joshi M, Khan H, Klein EJ, Heater NK, Koshkin VS, Kwon DH, Labaki C, Latif T, McKay RR, Nagaraj G, Nakasone ES, Nonato T, Polimera HV, Puc M, Razavi P, Ruiz-Garcia E, Saliby RM, Shastri A, Singh SRK, Tagalakis V, Vilar-Compte D, Weissmann LB, Wilkins CR, Wise-Draper TM, Wotman MT, Yoon JJ, Mishra S, Grivas P, Shyr Y, Warner JL, Connors JM, Shah DP, and Rosovsky RP. Systemic Anticancer Therapy and Thromboembolic Outcomes in Hospitalized Patients With Cancer and COVID-19. JAMA Oncol 2023.
Document Type
Article
Publication Date
8-17-2023
Publication Title
JAMA Oncol
Abstract
IMPORTANCE: Systematic data on the association between anticancer therapies and thromboembolic events (TEEs) in patients with COVID-19 are lacking.
OBJECTIVE: To assess the association between anticancer therapy exposure within 3 months prior to COVID-19 and TEEs following COVID-19 diagnosis in patients with cancer.
DESIGN, SETTING, AND PARTICIPANTS: This registry-based retrospective cohort study included patients who were hospitalized and had active cancer and laboratory-confirmed SARS-CoV-2 infection. Data were accrued from March 2020 to December 2021 and analyzed from December 2021 to October 2022.
EXPOSURE: Treatments of interest (TOIs) (endocrine therapy, vascular endothelial growth factor inhibitors/tyrosine kinase inhibitors [VEGFis/TKIs], immunomodulators [IMiDs], immune checkpoint inhibitors [ICIs], chemotherapy) vs reference (no systemic therapy) in 3 months prior to COVID-19.
MAIN OUTCOMES AND MEASURES: Main outcomes were (1) venous thromboembolism (VTE) and (2) arterial thromboembolism (ATE). Secondary outcome was severity of COVID-19 (rates of intensive care unit admission, mechanical ventilation, 30-day all-cause mortality following TEEs in TOI vs reference group) at 30-day follow-up.
RESULTS: Of 4988 hospitalized patients with cancer (median [IQR] age, 69 [59-78] years; 2608 [52%] male), 1869 had received 1 or more TOIs. Incidence of VTE was higher in all TOI groups: endocrine therapy, 7%; VEGFis/TKIs, 10%; IMiDs, 8%; ICIs, 12%; and chemotherapy, 10%, compared with patients not receiving systemic therapies (6%). In multivariable log-binomial regression analyses, relative risk of VTE (adjusted risk ratio [aRR], 1.33; 95% CI, 1.04-1.69) but not ATE (aRR, 0.81; 95% CI, 0.56-1.16) was significantly higher in those exposed to all TOIs pooled together vs those with no exposure. Among individual drugs, ICIs were significantly associated with VTE (aRR, 1.45; 95% CI, 1.01-2.07). Also noted were significant associations between VTE and active and progressing cancer (aRR, 1.43; 95% CI, 1.01-2.03), history of VTE (aRR, 3.10; 95% CI, 2.38-4.04), and high-risk site of cancer (aRR, 1.42; 95% CI, 1.14-1.75). Black patients had a higher risk of TEEs (aRR, 1.24; 95% CI, 1.03-1.50) than White patients. Patients with TEEs had high intensive care unit admission (46%) and mechanical ventilation (31%) rates. Relative risk of death in patients with TEEs was higher in those exposed to TOIs vs not (aRR, 1.12; 95% CI, 0.91-1.38) and was significantly associated with poor performance status (aRR, 1.77; 95% CI, 1.30-2.40) and active/progressing cancer (aRR, 1.55; 95% CI, 1.13-2.13).
CONCLUSIONS AND RELEVANCE: In this cohort study, relative risk of developing VTE was high among patients receiving TOIs and varied by the type of therapy, underlying risk factors, and demographics, such as race and ethnicity. These findings highlight the need for close monitoring and perhaps personalized thromboprophylaxis to prevent morbidity and mortality associated with COVID-19-related thromboembolism in patients with cancer.
PubMed ID
37589970
ePublication
ePub ahead of print