Role of Alström syndrome 1 in the regulation of glomerular hemodynamics
Recommended Citation
Monu SR, Potter DL, Liao TD, King KN, and Ortiz PA. Role of Alström syndrome 1 in the regulation of glomerular hemodynamics. Am J Physiol Renal Physiol 2023; 325(4):F418-f425.
Document Type
Article
Publication Date
10-1-2023
Publication Title
American journal of physiology. Renal physiology
Abstract
Inactivating mutations in the ALMS1 gene in humans cause Alström syndrome, characterized by the early onset of obesity, insulin resistance, and renal dysfunction. However, the role of ALMS1 in renal function and hemodynamics is unclear. We previously found that ALMS1 is expressed in thick ascending limbs, where it binds and decreases Na(+)-K(+)-2Cl(-) cotransporter activity. We hypothesized that ALMS1 is expressed in macula densa cells and that its deletion enhances tubuloglomerular feedback (TGF) and reduces glomerular filtration rate (GFR) in rats. To test this, homozygous ALMS1 knockout (KO) and littermate wild-type Dahl salt-sensitive rats were studied. TGF sensitivity was higher in ALMS1 KO rats as measured by in vivo renal micropuncture. Using confocal microscopy, we confirmed immunolabeling of ALMS1 in macula densa cells (nitric oxide synthase 1 positive), supporting a role for ALMS1 in TGF regulation. Baseline glomerular capillary pressure was higher in ALMS1 KO rats, as was mean arterial pressure. Renal interstitial hydrostatic pressure was lower in ALMS1 KO rats, which is linked to increased Na(+) reabsorption and hypertension. GFR was reduced in ALMS1 KO rats. Seven-week-old ALMS1 KO rats were not proteinuric, but proteinuria was present in 18- to 22-wk-old ALMS1 KO rats. The glomerulosclerosis index was higher in 18-wk-old ALMS1 KO rats. In conclusion, ALMS1 is involved in the control of glomerular hemodynamics in part by enhancing TGF sensitivity, and this may contribute to decreased GFR. Increased TGF sensitivity, enhanced glomerular capillary pressure, and hypertension may lead to glomerular damage in ALMS1 KO rats. These are the first data supporting the role of ALMS1 in TGF and glomerular hemodynamics.
NEW & NOTEWORTHY: ALMS1 is a novel protein involved in regulating tubuloglomerular feedback (TGF) sensitivity, glomerular capillary pressure, and blood pressure, and its dysfunction may reduce renal function and cause glomerular damage.
Medical Subject Headings
Humans; Rats; Animals; Alstrom Syndrome; Rats, Inbred Dahl; Kidney Diseases; Glomerular Filtration Rate; Hemodynamics; Hypertension
PubMed ID
37560774
Volume
325
Issue
4
First Page
418
Last Page
418