MAS1 Receptor Trafficking Involves ERK1/2 Activation Through a β-Arrestin2-Dependent Pathway
Recommended Citation
Cerniello FM, Carretero OA, Longo Carbajosa NA, Cerrato BD, Santos RA, Grecco HE, Gironacci MM. Mas1 receptor trafficking involves erk1/2 activation through a beta-arrestin2-dependent pathway. Hypertension. 2017;70(5):982-989.
Document Type
Article
Publication Date
11-1-2017
Publication Title
Hypertension
Abstract
The MAS1 receptor (R) exerts protective effects in the brain, heart, vessels, and kidney. R trafficking plays a critical function in signal termination and propagation and in R resensitization. We examined MAS1R internalization and trafficking on agonist stimulation and the role of β-arrestin2 in the activation of ERK1/2 (extracellular signal-regulated kinase 1/2) and Akt after MAS1R stimulation. Human embryonic kidney 293T cells were transfected with the coding sequence for MAS1R-YFP (MAS1R fused to yellow fluorescent protein). MAS1R internalization was evaluated by measuring the MAS1R present in the plasma membrane after agonist stimulation using a ligand-binding assay. MAS1R trafficking was evaluated by its colocalization with trafficking markers. MAS1R internalization was blocked in the presence of shRNAcaveolin-1 and with dominant negatives for Eps15 (a protein involved in endocytosed Rs by clathrin-coated pits) and for dynamin. After stimulation, MAS1R colocalized with Rab11-a slow recycling vesicle marker-and not with Rab4-a fast recycling vesicle marker-or LysoTracker-a lysosome marker. Cells transfected with MAS1R showed an increase in Akt and ERK1/2 activation on angiotensin-(1-7) stimulation, which was blocked when the clathrin-coated pits pathway was blocked. Suppression of β-arrestin2 by shRNA reduced the angiotensin-(1-7)-induced ERK1/2 activation, whereas Akt activation was not modified. We conclude that on agonist stimulation, MAS1R is internalized through clathrin-coated pits and caveolae in a dynamin-dependent manner and is then slowly recycled back to the plasma membrane. MAS1R induced Akt and ERK1/2 activation from early endosomes, and the activation of ERK1/2 was mediated by β-arrestin2. Thus, MAS1R activity and density may be tightly controlled by the cell.
Medical Subject Headings
Angiotensin I; Endocytosis; Endosomes; Extracellular Signal-Regulated MAP Kinases; HEK293 Cells; Humans; Peptide Fragments; Protein Transport; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Signal Transduction; beta-Arrestin 2
PubMed ID
28874464
Volume
70
Issue
5
First Page
982
Last Page
989