Administration of Downstream ApoE Attenuates the Adverse Effect of Brain ABCA1 Deficiency on Stroke
Recommended Citation
Wang X, Li R, Zacharek A, Landschoot-Ward J, Wang F, Wu KH, Chopp M, Chen J, and Cui X. Administration of downstream ApoE attenuates the adverse effect of brain ABCA1 deficiency on stroke. Int J Mol Sci 2018; 19(11):3368.
Document Type
Article
Publication Date
10-28-2018
Publication Title
Int J Mol Sci
Abstract
The ATP-binding cassette transporter member A1 (ABCA1) and apolipoprotein E (ApoE) are major cholesterol transporters that play important roles in cholesterol homeostasis in the brain. Previous research demonstrated that specific deletion of brain-ABCA1 (ABCA1-B/-B) reduced brain grey matter (GM) and white matter (WM) density in the ischemic brain and decreased functional outcomes after stroke. However, the downstream molecular mechanism underlying brain ABCA1-deficiency-induced deficits after stroke is not fully understood. Adult male ABCA1-B/-B and ABCA1-floxed control mice were subjected to distal middle-cerebral artery occlusion and were intraventricularly infused with artificial mouse cerebrospinal fluid as vehicle control or recombinant human ApoE2 into the ischemic brain starting 24 h after stroke for 14 days. The ApoE/apolipoprotein E receptor 2 (ApoER2)/high-density lipoprotein (HDL) levels and GM/WM remodeling and functional outcome were measured. Although ApoE2 increased brain ApoE/HDL levels and GM/WM density, negligible functional improvement was observed in ABCA1-floxed-stroke mice. ApoE2-administered ABCA1-B/-B stroke mice exhibited elevated levels of brain ApoE/ApoER2/HDL, increased GM/WM density, and neurogenesis in both the ischemic ipsilateral and contralateral brain, as well as improved neurological function compared with the vehicle-control ABCA1-B/-B stroke mice 14 days after stroke. Ischemic lesion volume was not significantly different between the two groups. In vitro supplementation of ApoE2 into primary cortical neurons and primary oligodendrocyte-progenitor cells (OPCs) significantly increased ApoER2 expression and enhanced cholesterol uptake. ApoE2 promoted neurite outgrowth after oxygen-glucose deprivation and axonal outgrowth of neurons, and increased proliferation/survival of OPCs derived from ABCA1-B/-B mice. Our data indicate that administration of ApoE2 minimizes the adverse effects of ABCA1 deficiency after stroke, at least partially by promoting cholesterol traffic/redistribution and GM/WM remodeling via increasing the ApoE/HDL/ApoER2 signaling pathway.
Medical Subject Headings
ATP Binding Cassette Transporter 1; Animals; Apolipoproteins E; Brain; Cells, Cultured; Cholesterol, HDL; Humans; LDL-Receptor Related Proteins; Male; Mice; Mice, Inbred C57BL; Neurons; Stroke
PubMed ID
30373276
Volume
19
Issue
11
First Page
3368