miR-145 Regulates Diabetes-Bone Marrow Stromal Cell-Induced Neurorestorative Effects in Diabetes Stroke Rats
Recommended Citation
Cui C, Ye X, Chopp M, Venkat P, Zacharek A, Yan T, Ning R, Yu P, Cui G, and Chen J. Mir-145 regulates diabetes-bone marrow stromal cell-induced neurorestorative effects in diabetes stroke rats. Stem Cells Transl Med 2016; 5(12):1656-1667.
Document Type
Article
Publication Date
12-1-2016
Publication Title
Stem Cells Transl Med
Abstract
In rats with type 1 diabetes (T1DM), the therapeutic effects and underlying mechanisms of action of stroke treatment were compared between bone-marrow stromal cells (BMSCs) derived from T1DM rats (DM-BMSCs) and BMSCs derived from normal rats (Nor-BMSCs). The novel role of microRNA-145 (miR-145) in mediating DM-BMSC treatment-induced benefits was also investigated. T1DM rats (n = 8 per group) underwent 2 hours of middle cerebral artery occlusion (MCAo) and were treated 24 hours later with the one of the following (5 × 106 cells administered i.v.): (a) phosphate-buffered saline (PBS); (b) Nor-BMSCs; (c) DM-BMSCs; (d) DM-BMSCs with miR-145 overexpression (miR-145+/+DM-BMSCs); or (e) Nor-BMSCs with miR-145 knockdown. Evaluation of functional outcome, vascular and white-matter remodeling and microRNA expression was made, and in vitro studies were performed. In vitro, DM-BMSCs exhibited decreased miR-145 expression and increased survival compared with Nor-BMSCs. Capillary tube formation and axonal outgrowth in cultured primary cortical neurons were significantly increased by DM-BMSC-conditioned medium compared with Nor-BMSCs, and significantly decreased by miR-145+/+DM-BMSC-conditioned medium compared with DM-BMSCs. In T1DM rats in which stroke had been induced (T1DM stroke rats), DM-BMSC treatment significantly improved functional outcome, increased vascular and white matter remodeling, decreased serum miR-145 expression, and increased expression of the miR-145 target genes adenosine triphosphate-binding cassette transporter 1 (ABCA1) and insulin-like growth factor 1 receptor (IGFR1), compared with Nor-BMSCs or PBS treatment. However, miR-145+/+DM-BMSCs significantly increased serum miR-145 expression and decreased brain ABCA1 and IGFR1 expression, as well as attenuated DM-BMSC-induced neurorestorative effects in T1DM-MCAo rats. DM-BMSCs exhibited decreased miR-145 expression. In T1DM-MCAo rats, DM-BMSC treatment improved functional outcome and promoted neurorestorative effects. The miR-145/ABCA1/IGFR1 pathway may contribute to the enhanced DM-BMSCs' functional and neurorestorative effects in T1DM stroke rats.
SIGNIFICANCE: In rats with type 1 diabetes (T1DM), the therapeutic effects and underlying mechanisms of action of stroke treatment were compared between bone-marrow stromal cells (BMSCs) derived from T1DM rats (DM-BMSCs) and BMSCs derived from normal rats (Nor-BMSCs). In vitro, DM-BMSCs and derived exosomes decreased miR-145 expression and increased DM-BMSC survival, capillary tube formation, and axonal outgrowth, compared with Nor-BMSCs; these effects were decreased by DM-BMSCs in which miR-145 was overexpressed. In vivo, compared with Nor-BMSC or phosphate-buffered saline treatment, DM-BMSC treatment improved functional outcome and vascular and white matter remodeling, decreased serum miR-145 expression, and increased expression of the miR-145 target genes ABCA1 and IGFR1. microRNA-145 mediated the benefits induced by DM-BMSC treatment.
Medical Subject Headings
ATP Binding Cassette Transporter 1; Animals; Axons; Blood-Brain Barrier; Bone Marrow Cells; Capillaries; Cell Proliferation; Cell Survival; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Gene Knockdown Techniques; Male; Mesenchymal Stem Cell Transplantation; Mesenchymal Stem Cells; MicroRNAs; Myocytes, Smooth Muscle; Neovascularization, Physiologic; Oligodendroglia; Rats, Wistar; Receptor, IGF Type 1; Stroke; Treatment Outcome; Vascular Remodeling; White Matter; Zonula Occludens-1 Protein
PubMed ID
27460851
Volume
5
Issue
12
First Page
1656
Last Page
1667