New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain
Recommended Citation
Venkat P, Chopp M, and Chen J. New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain. Croat Med J 2016; 57(3):223-228.
Document Type
Article
Publication Date
6-30-2016
Publication Title
Croatian medical journal
Abstract
The brain has high metabolic and energy needs and requires continuous cerebral blood flow (CBF), which is facilitated by a tight coupling between neuronal activity, CBF, and metabolism. Upon neuronal activation, there is an increase in energy demand, which is then met by a hemodynamic response that increases CBF. Such regional CBF increase in response to neuronal activation is observed using neuroimaging techniques such as functional magnetic resonance imaging and positron emission tomography. The mechanisms and mediators (eg, nitric oxide, astrocytes, and ion channels) that regulate CBF-metabolism coupling have been extensively studied. The neurovascular unit is a conceptual model encompassing the anatomical and metabolic interactions between the neurons, vascular components, and glial cells in the brain. It is compromised under disease states such as stroke, diabetes, hypertension, dementias, and with aging, all of which trigger a cascade of inflammatory responses that exacerbate brain damage. Hence, tight regulation and maintenance of neurovascular coupling is central for brain homeostasis. This review article also discusses the waste clearance pathways in the brain such as the glymphatic system. The glymphatic system is a functional waste clearance pathway that removes metabolic wastes and neurotoxins from the brain along paravascular channels. Disruption of the glymphatic system burdens the brain with accumulating waste and has been reported in aging as well as several neurological diseases.
Medical Subject Headings
Brain; Cerebrovascular Circulation; Humans; Neurovascular Coupling
PubMed ID
27374823
Volume
57
Issue
3
First Page
223
Last Page
228