Document Type

Article

Publication Date

11-1-2020

Publication Title

eNeuro

Abstract

Children's sensitivity to regularities within the linguistic stream, such as the likelihood that syllables co-occur, is foundational to speech segmentation and language acquisition. Yet, little is known about the neurocognitive mechanisms underlying speech segmentation in typical development and in neurodevelopmental disorders that impact language acquisition such as autism spectrum disorder (ASD). Here, we investigate the neural signals of statistical learning in 15 human participants (children ages 8-12) with a clinical diagnosis of ASD and 14 age-matched and gender-matched typically developing peers. We tracked the evoked neural responses to syllable sequences in a naturalistic statistical learning corpus using magnetoencephalography (MEG) in the left primary auditory cortex, posterior superior temporal gyrus (pSTG), and inferior frontal gyrus (IFG), across three repetitions of the passage. In typically developing children, we observed a neural index of learning in all three regions of interest (ROIs), measured by the change in evoked response amplitude as a function of syllable surprisal across passage repetitions. As surprisal increased, the amplitude of the neural response increased; this sensitivity emerged after repeated exposure to the corpus. Children with ASD did not show this pattern of learning in all three regions. We discuss two possible hypotheses related to children's sensitivity to bottom-up sensory deficits and difficulty with top-down incremental processing.

PubMed ID

33199412

ePublication

ePub ahead of print

Volume

7

Issue

6

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.