Recommended Citation
Calderazzo S, Covert M, Alba D, Bowley BE, Pessina MA, Rosene DL, Buller B, Medalla M, and Moore TL. Neural recovery after cortical injury: Effects of MSC derived extracellular vesicles on motor circuit remodeling in rhesus monkeys. IBRO Neurosci Rep 2022; 13:243-254.
Document Type
Article
Publication Date
12-1-2022
Publication Title
IBRO Neurosci Rep
Abstract
Reorganization of motor circuits in the cortex and corticospinal tract are thought to underlie functional recovery after cortical injury, but the mechanisms of neural plasticity that could be therapeutic targets remain unclear. Recent work from our group have shown that systemic treatment with mesenchymal stem cell derived (MSCd) extracellular vesicles (EVs) administered after cortical damage to the primary motor cortex (M1) of rhesus monkeys resulted in a robust recovery of fine motor function and reduced chronic inflammation. Here, we used immunohistochemistry for cfos, an activity-dependent intermediate early gene, to label task-related neurons in the surviving primary motor and premotor cortices, and markers of axonal and synaptic plasticity in the spinal cord. Compared to vehicle, EV treatment was associated with a greater density of cfos
PubMed ID
36590089
Volume
13
First Page
243
Last Page
254