Remote Ischemic Conditioning Improves Attention Network Function and Blood Oxygen Levels in Unacclimatized Adults Exposed to High Altitude

Document Type

Article

Publication Date

7-1-2020

Publication Title

Aging Dis

Abstract

Remote ischemic conditioning (RIC) confers protection on major organs from hypoxic/ischemic injuries; however, its impacts on attention network function and blood oxygen levels in unacclimatized adults exposed to high altitudes have yet to be elucidated. In this study, we recruited 120 healthy male volunteers, of which one was exposed to high altitude and the other was exposed to low altitude. The two cohorts were further divided into RIC and sham control groups. The attentional network test (ANT) was performed to evaluate cognitive function before and after RIC treatment. Other outcomes such as heart rate, blood pressure, blood oxygen saturation, cerebral tissue oxygenation index (CTOI), and cerebrovascular hemodynamic indices were also evaluated. Prior to RIC treatment, there were no significant differences in orienting or executive function between the treatment and control arms of either cohort. Alerting function was significantly lower in the high-altitude cohort than in the low-altitude cohort. There were significant reductions in both blood oxygen and CTOI in the high-altitude cohort relative to the low-altitude cohort, while the pulse index (PI) of the former cohort was significantly increased. After RIC treatment, there was a significant difference in alerting function between the high-altitude RIC group and its associated control. The CTOI of the treatment group increased from 60.39±3.40% to 62.78±4.40%, and blood oxygenation also improved. Furthermore, this group showed a significant reduction in its PI. Exposure to high-altitude environments had a significant impact on alerting function, blood oxygen, CTOI, and PI. RIC ameliorated changes in attentional function, as well as blood oxygen and CTOI, suggesting that it potentially alters cerebrovascular compliance upon exposure to high altitude.

PubMed ID

32765948

Volume

11

Issue

4

First Page

820

Last Page

827

Share

COinS