Recommended Citation
Patel UA, Hernandez D, Shnayder Y, Wax MK, Hanasono MM, Hornig J, Ghanem TA, Old M, Jackson RS, Ledgerwood LG, Pipkorn P, Lin L, Ong A, Greene JB, Bekeny J, Yiu Y, Noureldine S, Li DX, Fontanarosa J, Greenbaum E, and Richmon JM. Free flap reconstruction monitoring techniques and frequency in the era of restricted resident work hours JAMA Otolaryngol Head Neck Surg 2017 Aug 1;143(8):803-809.
Document Type
Article
Publication Date
8-1-2017
Publication Title
JAMA Otolaryngol Head Neck Surg
Abstract
Importance: Free flap reconstruction of the head and neck is routinely performed with success rates around 94% to 99% at most institutions. Despite experience and meticulous technique, there is a small but recognized risk of partial or total flap loss in the postoperative setting. Historically, most microvascular surgeons involve resident house staff in flap monitoring protocols, and programs relied heavily on in-house resident physicians to assure timely intervention for compromised flaps. In 2003, the Accreditation Council for Graduate Medical Education mandated the reduction in the hours a resident could work within a given week. At many institutions this new era of restricted resident duty hours reshaped the protocols used for flap monitoring to adapt to a system with reduced resident labor.
Objectives: To characterize various techniques and frequencies of free flap monitoring by nurses and resident physicians; and to determine if adapted resident monitoring frequency is associated with flap compromise and outcome.
Design, Setting, and Participants: This multi-institutional retrospective review included patients undergoing free flap reconstruction to the head and/or neck between January 2005 and January 2015. Consecutive patients were included from different academic institutions or tertiary referral centers to reflect evolving practices.
Main Outcomes and Measures: Technique, frequency, and personnel for flap monitoring; flap complications; and flap success.
Results: Overall, 1085 patients (343 women [32%] and 742 men [78%]) from 9 institutions were included. Most patients were placed in the intensive care unit postoperatively (n = 790 [73%]), while the remaining were placed in intermediate care (n = 201 [19%]) or in the surgical ward (n = 94 [7%]). Nurses monitored flaps every hour (q1h) for all patients. Frequency of resident monitoring varied, with 635 patients monitored every 4 hours (q4h), 146 monitored every 8 hours (q8h), and 304 monitored every 12 hours (q12h). Monitoring techniques included physical examination (n = 949 [87%]), handheld external Doppler sonography (n = 739 [68%]), implanted Doppler sonography (n = 333 [31%]), and needle stick (n = 349 [32%]); 105 patients (10%) demonstrated flap compromise, prompting return to the operating room in 96 patients. Of these 96 patients, 46 had complete flap salvage, 22 had partial loss, and 37 had complete loss. The frequency of resident flap checks did not affect the total flap loss rate (q4h, 25 patients [4%]; q8h, 8 patients [6%]; and q12h, 8 patients [3%]). Flap salvage rates for compromised flaps were not statistically different.
Conclusions and Relevance: Academic centers rely primarily on q1h flap checks by intensive care unit nurses using physical examination and Doppler sonography. Reduced resident monitoring frequency did not alter flap salvage nor flap outcome. These findings suggest that institutions may successfully monitor free flaps with decreased resident burden.
Medical Subject Headings
Female; Free Tissue Flaps; Graft Survival; Head and Neck Neoplasms; Humans; Internship and Residency; Male; Middle Aged; Monitoring, Physiologic; Postoperative Care; Prognosis; Reconstructive Surgical Procedures; Retrospective Studies; Ultrasonography, Doppler
PubMed ID
28570718
Volume
143
Issue
8
First Page
803
Last Page
809