MiR-146a promotes oligodendrocyte progenitor cell differentiation and enhances remyelination in a model of experimental autoimmune encephalomyelitis
Recommended Citation
Zhang J, Gang Zhang Z, Lu M, Zhang Y, Shang X, Chopp M. MiR-146a promotes oligodendrocyte progenitor cell differentiation and enhances remyelination in a model of experimental autoimmune encephalomyelitis. Neurobiology of disease 2019; 125:154-162.
Document Type
Article
Publication Date
1-29-2019
Publication Title
Neurobiology of disease
Abstract
The death of mature oligodendrocytes (OLs) leads to demyelination in the central nervous system (CNS) and subsequently to functional deficits. Remyelination requires the differentiation of oligodendrocyte progenitor cells (OPCs) into myelinating OLs, which in the CNS with neurodegenerative diseases such as multiple sclerosis (MS), is often inhibited. Among the inhibitors of OPC differentiation are toll-like receptor 2 (TLR2) and interleukin-1 receptor-associated kinase 1 (IRAK1) signaling, and both are negatively regulated by microRNA-146a (miR-146a). Therefore, we hypothesized that increase of miR-146a level in the CNS would foster OPC differentiation and remyelination by inhibiting the TLR2/IRAK1 signaling pathway. Here, we tested this hypothesis using exogenous miR-146a mimics and a mouse model of MS, experimental autoimmune encephalomyelitis (EAE) induced by immunization with myelin proteolipid protein peptide (PLP139-151). EAE mice were treated by miR-146a mimics or miR-146a mimic negative controls, respectively, which initiated at day 14 post immunization, once a week for 6 consecutive weeks. Neurological function was monitored daily. Immunofluorescent staining, qRT-PCR and Western blot were used to measure the differentiation of OPCs and myelination, and to investigate the underlying mechanisms of action of miR-146a. Using a fluorescence tracing approach, we found that miR-146a mimics crossed the blood brain barrier and targeted OPCs and microglia/macrophages after systemic administration. MiR-146a mimic treatment substantially improved neurological functional outcome, increased the number of newly generated OLs which may facilitate remyelination in the CNS. The cell number, cytokine level and protein levels of M2 phonotype of microglia/macrophages significantly increased, while cytokine and protein levels of the M1 phenotype significantly decreased after miR-146a mimic treatment. Increased OPC differentiation and remyelination were associated with reduction of TLR2/IRAK1 signaling pathway activity by miR-146a mimic treatment. This study provides insight into the cellular and molecular bases for the therapeutic effects of miR-146a on OPC differentiation and remyelination, and suggests the potential of enhancing miR-146a as a treatment of demyelinating disorders.
PubMed ID
30707940
ePublication
ePub ahead of print
Volume
125
First Page
154
Last Page
162