Document Type

Article

Publication Date

5-13-2022

Publication Title

BMC infectious diseases [electronic resource]

Abstract

BACKGROUND: Patients with COVID-19 infection are commonly reported to have an increased risk of venous thrombosis. The choice of anti-thrombotic agents and doses are currently being studied in randomized controlled trials and retrospective studies. There exists a need for individualized risk stratification of venous thromboembolism (VTE) to assist clinicians in decision-making on anticoagulation. We sought to identify the risk factors of VTE in COVID-19 patients, which could help physicians in the prevention, early identification, and management of VTE in hospitalized COVID-19 patients and improve clinical outcomes in these patients.

METHOD: This is a multicenter, retrospective database of four main health systems in Southeast Michigan, United States. We compiled comprehensive data for adult COVID-19 patients who were admitted between 1st March 2020 and 31st December 2020. Four models, including the random forest, multiple logistic regression, multilinear regression, and decision trees, were built on the primary outcome of in-hospital acute deep vein thrombosis (DVT) and pulmonary embolism (PE) and tested for performance. The study also reported hospital length of stay (LOS) and intensive care unit (ICU) LOS in the VTE and the non-VTE patients. Four models were assessed using the area under the receiver operating characteristic curve and confusion matrix.

RESULTS: The cohort included 3531 admissions, 3526 had discharge diagnoses, and 6.68% of patients developed acute VTE (N = 236). VTE group had a longer hospital and ICU LOS than the non-VTE group (hospital LOS 12.2 days vs. 8.8 days, p < 0.001; ICU LOS 3.8 days vs. 1.9 days, p < 0.001). 9.8% of patients in the VTE group required more advanced oxygen support, compared to 2.7% of patients in the non-VTE group (p < 0.001). Among all four models, the random forest model had the best performance. The model suggested that blood pressure, electrolytes, renal function, hepatic enzymes, and inflammatory markers were predictors for in-hospital VTE in COVID-19 patients.

CONCLUSIONS: Patients with COVID-19 have a high risk for VTE, and patients who developed VTE had a prolonged hospital and ICU stay. This random forest prediction model for VTE in COVID-19 patients identifies predictors which could aid physicians in making a clinical judgment on empirical dosages of anticoagulation.

Medical Subject Headings

Adult; Anticoagulants; COVID-19; Cohort Studies; Humans; Pulmonary Embolism; Retrospective Studies; Risk Factors; Venous Thromboembolism; Venous Thrombosis

PubMed ID

35562677

Volume

22

Issue

1

First Page

462

Last Page

462

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.