Assessing the protective potential of H1N1 influenza virus hemagglutinin head and stalk antibodies in humans

Document Type

Article

Publication Date

1-30-2019

Publication Title

Journal of virology

Abstract

Seasonal influenza viruses are a major cause of human disease worldwide. Most neutralizing antibodies (Abs) elicited by influenza viruses target the head domain of the hemagglutinin (HA) protein. Anti-HA head Abs can be highly potent, but they have limited breadth since the HA head is variable. There is great interest in developing new universal immunization strategies that elicit broadly neutralizing Abs against conserved regions of HA, such as the stalk domain. Although HA stalk Abs can provide protection in animal models, it is unknown if they are present at sufficient levels in humans to provide protection against naturally-acquired influenza virus infections. Here, we quantified H1N1 HA head and stalk-specific Abs in 179 adults hospitalized during the 2015-2016 influenza virus season. We found that HA head Abs, as measured by hemagglutinin-inhibition (HAI) assays, were associated with protection against naturally-acquired H1N1 infection. HA stalk-specific serum total IgG titers were also associated with protection, but this association was attenuated and not statistically significant after adjustment for HA head-specific Ab titers. We found slightly higher titers of HA stalk-specific IgG1 and IgA Abs in sera from uninfected participants compared to sera from infected participants; however, we found no difference in sera in vitro antibody dependent cellular cytotoxicity activity. In passive transfer experiments, sera from participants with high HAI activity efficiently protected mice, while sera with low HAI activity protected mice to a lower extent. Our data suggest that HA head Abs are more efficient at protecting against H1N1 infection compared to HA stalk Abs.IMPORTANCE Abs targeting the HA head of influenza viruses are often associated with protection from influenza virus infections. These Abs typically have limited breadth since mutations frequently arise in HA head epitopes. New vaccines targeting the more conserved HA stalk domain are being developed. Abs that target the HA stalk are protective in animal models, but it is unknown if these Abs exist at protective levels in humans. Here, we completed experiments to determine if Abs against the HA head and stalk were associated with protection from naturally-acquired human influenza virus infections during the 2015-2016 influenza season.

PubMed ID

30700610

Volume

93

Issue

8

First Page

e02134-18

Share

COinS