Building and Validating a Computerized Algorithm for Surveillance of Ventilator-Associated Events

Document Type

Article

Publication Date

9-1-2015

Publication Title

Infection control and hospital epidemiology : the official journal of the Society of Hospital Epidemiologists of America

Abstract

OBJECTIVE: To develop an automated method for ventilator-associated condition (VAC) surveillance and to compare its accuracy and efficiency with manual VAC surveillance

SETTING: The intensive care units (ICUs) of 4 hospitals

METHODS: This study was conducted at Detroit Medical Center, a tertiary care center in metropolitan Detroit. A total of 128 ICU beds in 4 acute care hospitals were included during the study period from August to October 2013. The automated VAC algorithm was implemented and utilized for 1 month by all study hospitals. Simultaneous manual VAC surveillance was conducted by 2 infection preventionists and 1 infection control fellow who were blinded to each another's findings and to the automated VAC algorithm results. The VACs identified by the 2 surveillance processes were compared.

RESULTS: During the study period, 110 patients from all the included hospitals were mechanically ventilated and were evaluated for VAC for a total of 992 mechanical ventilation days. The automated VAC algorithm identified 39 VACs with sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 100%. In comparison, the combined efforts of the IPs and the infection control fellow detected 58.9% of VACs, with 59% sensitivity, 99% specificity, 91% PPV, and 92% NPV. Moreover, the automated VAC algorithm was extremely efficient, requiring only 1 minute to detect VACs over a 1-month period, compared to 60.7 minutes using manual surveillance.

CONCLUSIONS: The automated VAC algorithm is efficient and accurate and is ready to be used routinely for VAC surveillance. Furthermore, its implementation can optimize the sensitivity and specificity of VAC identification.

Medical Subject Headings

Algorithms; Humans; Inhalation; Intensive Care Units; Lung Diseases; Oxygen; Pneumonia, Ventilator-Associated; Population Surveillance; Positive-Pressure Respiration, Intrinsic; Predictive Value of Tests; Pulmonary Atelectasis; Pulmonary Edema; Respiration, Artificial; Respiratory Distress Syndrome, Adult; Software Design; Software Validation

PubMed ID

26072660

Volume

36

Issue

9

First Page

999

Last Page

1003

Share

COinS