Technical Note: Evaluation of plastic scintillator detector for small field stereotactic patient-specific quality assurance
Recommended Citation
Qin Y, Gardner SJ, Kim J, Huang Y, Wen N, Doemer A, and Chetty IJ. Evaluation of plastic scintillator detector for small field stereotactic patient-specific quality assurance. Med Phys 2017; Oct;44(10):5509-5516.
Document Type
Article
Publication Date
10-1-2017
Publication Title
Medical physics
Abstract
PURPOSE: To evaluate the performance of a commercial plastic scintillator detector (PSD) for small-field stereotactic patient-specific quality assurance (QA) measurements using flattening-filter-free beam.
METHODS: A total of 10 spherical targets [volume range: (0.03 cc-2 cc)] were planned with two techniques: (a) dynamic conformal arc (DCA-10 plans) and (b) volumetric modulated arc therapy (VMAT-10 plans). All plans were generated using Varian Eclipse treatment planning system, and AcurosXB v.13 algorithm in 1.0 mm grid size. Additionally, 14 previously treated cranial and spine SRS plans were evaluated [6 DCA, 8 VMAT, volume range: (0.04 cc-119.02 cc)]. Plan modulation was quantified via two metrics: MU per prescription dose (MU/Rx) and Average Leaf Pair Opening (ALPO). QA was performed on the Varian Edge linear accelerator equipped with HDMLC. Three detectors were used: (a) PinPoint ion chamber (PTW; active volume 0.015 cc), (b) Exradin W1 PSD (Standard Imaging; active volume 0.002 cc), and (c) Gafchromic EBT3 film (Ashland). PinPoint chamber and PSD were positioned perpendicular to beam axis in a Lucy phantom (Standard Imaging); films were placed horizontally capturing the coronal plane.
RESULTS: PSD, film, and PinPoint chamber measured average differences of 1.00 ± 1.54%, 1.30 ± 1.69%, and -0.66 ± 2.36%, respectively, compared to AcurosXB dose calculation. As the target volume decreased, PinPoint chamber measured lower doses (maximum -5.07% at 0.07 cc target), while PSD and film measured higher doses (2.87% and 2.54% at 0.03 cc target) than AcurosXB. Film agreed with the benchmark detector PSD by an average difference of 0.31 ± 1.20%, but suffered from larger uncertainty; PinPoint chamber underestimated dose by more than 4% for targets smaller than 0.2 cc. Taking PSD as the measurement standard, DCA plans achieved good QA results across all volumes studied, with an average of -0.07 ± 0.89%; for VMAT plans, PSD measured consistently higher dose (1.95 ± 1.36%) than AcurosXB. Correlation study revealed that plan modulation quantified by both MU/Rx and ALPO correlated significantly with QA results.
CONCLUSION: Among all three detectors, PSD demonstrated superior performances in plans with small fields and heavy modulation. High consistency and low uncertainty made PSD a suitable detector for clinical routine SRS QA. PinPoint chamber should be avoided for targets smaller than 0.2 cc; film dosimetry can be utilized with careful evaluation of its uncertainty bracket. Compared to PSD measurements, AcurosXB calculation demonstrated high accuracy for nonmodulated small fields. The positive correlation between plan modulation and QA discrepancy calls for our attention for clinical SRS plans with high modulation.
Medical Subject Headings
Humans; Phantoms, Imaging; Plastics; Quality Control; Radiosurgery; Radiotherapy Planning, Computer-Assisted; Scintillation Counting
PubMed ID
28714067
Volume
44
Issue
10
First Page
5509
Last Page
5516