Document Type

Article

Publication Date

12-27-2022

Publication Title

Sci Rep

Abstract

Automatic diagnosis of malignant prostate cancer patients from mpMRI has been studied heavily in the past years. Model interpretation and domain drift have been the main road blocks for clinical utilization. As an extension from our previous work we trained on a public cohort with 201 patients and the cropped 2.5D slices of the prostate glands were used as the input, and the optimal model were searched in the model space using autoKeras. As an innovative move, peripheral zone (PZ) and central gland (CG) were trained and tested separately, the PZ detector and CG detector were demonstrated effective in highlighting the most suspicious slices out of a sequence, hopefully to greatly ease the workload for the physicians.

Medical Subject Headings

Male; Humans; Multiparametric Magnetic Resonance Imaging; Magnetic Resonance Imaging; Deep Learning; Prostatic Neoplasms; Prostate

PubMed ID

36575209

Volume

12

Issue

1

First Page

22430

Last Page

22430

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.