Document Type

Article

Publication Date

5-31-2023

Publication Title

Transl Lung Cancer Res

Abstract

BACKGROUND: Radiotherapy for non-small cell lung cancer (NSCLC) can be dose-limiting due to treatment-related toxicities. Genistein has been shown to be a robust radioprotective agent in preclinical models. A novel genistein oral nanosuspension formulation (nano-genistein) has demonstrated efficacy in mitigating radiation-induced lung damage in preclinical animal models. However, while those studies have confirmed that nano-genistein can protect normal lung tissue from radiation-induced toxicities, no studies have assessed the effect of nano-genistein on lung tumors. Here, we evaluated the impact of nano-genistein on the efficacy of radiation treatment of lung tumors in a mouse xenograft model.

METHODS: Two separate studies were conducted utilizing human A549 cells implanted either dorsally within the upper torso or in the flank. Daily oral administration of nano-genistein (200 or 400 mg/kg/day) occurred prior to and after exposure to a single dose of thoracic or abdominal 12.5 Gy radiation. Tumor growth was monitored twice weekly, nano-genistein treatment continued for up to 20 weeks and histopathology of tissues was completed post euthanasia.

RESULTS: Continuous nano-genistein dosing was safe across all study groups in both studies. Animals receiving nano-genistein better maintained body weight following irradiation compared to corresponding vehicle treated animals. Animals that received nano-genistein also had reduced tumor growth and improved normal lung histopathology compared to those receiving vehicle suggesting that nano-genistein does not protect tumors from radiotherapy but is radioprotective of the lungs. There were no treatment-related histopathological findings noted in the skin adjacent to the tumor, esophagus, or uterus.

CONCLUSIONS: These results, including the safety following extended dosing, support the continued evaluation of nano-genistein as an adjunctive treatment for patients with NSCLC undergoing radiotherapy and serve as the basis of a phase 1b/2a multicenter clinical trial.

PubMed ID

37323169

Volume

12

Issue

5

First Page

999

Last Page

1010

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.