Recommended Citation
Mousavi Mojab SZ, Shams S, Fotouhi F, and Soltanian-Zadeh H. EpistoNet: an ensemble of Epistocracy-optimized mixture of experts for detecting COVID-19 on chest X-ray images. Sci Rep 2021; 11(1):21564.
Document Type
Article
Publication Date
11-3-2021
Publication Title
Sci Rep
Abstract
The Coronavirus has spread across the world and infected millions of people, causing devastating damage to the public health and global economies. To mitigate the impact of the coronavirus a reliable, fast, and accurate diagnostic system should be promptly implemented. In this study, we propose EpistoNet, a decision tree-based ensemble model using two mixtures of discriminative experts to classify COVID-19 lung infection from chest X-ray images. To optimize the architecture and hyper-parameters of the designed neural networks, we employed Epistocracy algorithm, a recently proposed hyper-heuristic evolutionary method. Using 2500 chest X-ray images consisting of 1250 COVID-19 and 1250 non-COVID-19 cases, we left out 500 images for testing and partitioned the remaining 2000 images into 5 different clusters using K-means clustering algorithm. We trained multiple deep convolutional neural networks on each cluster to help build a mixture of strong discriminative experts from the top-performing models supervised by a gating network. The final ensemble model obtained 95% accuracy on COVID-19 images and 93% accuracy on non-COVID-19. The experimental results show that EpistoNet can accurately, and reliably be used to detect COVID-19 infection in the chest X-ray images, and Epistocracy algorithm can be effectively used to optimize the hyper-parameters of the proposed models.
Medical Subject Headings
COVID-19; Deep Learning; Image Processing, Computer-Assisted; Radiography, Thoracic
PubMed ID
34732741
Volume
11
Issue
1
First Page
21564
Last Page
21564