Artificial Neural Network-Based Prediction of Outcome in Parkinson's Disease Patients Using DaTscan SPECT Imaging Features
Recommended Citation
Tang J, Yang B, Adams MP, Shenkov NN, Klyuzhin IS, Fotouhi S, Davoodi-Bojd E, Lu L, Soltanian-Zadeh H, Sossi V, and Rahmim A. Artificial Neural Network-Based Prediction of Outcome in Parkinson's Disease Patients Using DaTscan SPECT Imaging Features. Mol Imaging Biol 2019; Epub ahead of print.
Document Type
Article
Publication Date
3-7-2019
Publication Title
Molecular imaging and biology
Abstract
PURPOSE: Quantitative analysis of dopamine transporter (DAT) single-photon emission computed tomography (SPECT) images can enhance diagnostic confidence and improve their potential as a biomarker to monitor the progression of Parkinson's disease (PD). In the present work, we aim to predict motor outcome from baseline DAT SPECT imaging radiomic features and clinical measures using machine learning techniques.
PROCEDURES: We designed and trained artificial neural networks (ANNs) to analyze the data from 69 patients within the Parkinson's Progressive Marker Initiative (PPMI) database. The task was to predict the unified PD rating scale (UPDRS) part III motor score in year 4 from 92 imaging features extracted on 12 different regions as well as 6 non-imaging measures at baseline (year 0). We first performed univariate screening (including the adjustment for false discovery) to select 4 regions each having 10 features with significant performance in classifying year 4 motor outcome into two classes of patients (divided by the UPDRS III threshold of 30). The leave-one-out strategy was then applied to train and test the ANNs for individual and combinations of features. The prediction statistics were calculated from 100 rounds of experiments, and the accuracy in appropriate prediction (classification of year 4 outcome) was quantified.
RESULTS: Out of the baseline non-imaging features, only the UPDRS III (at year 0) was predictive, while multiple imaging features depicted significance. The different selected features reached a predictive accuracy of 70 % if used individually. Combining the top imaging features from the selected regions significantly improved the prediction accuracy to 75 % (p < 0.01). The combination of imaging features with the year 0 UPDRS III score also improved the prediction accuracy to 75%.
CONCLUSION: This study demonstrated the added predictive value of radiomic features extracted from DAT SPECT images in serving as a biomarker for PD progression tracking.
PubMed ID
30847821
ePublication
ePub ahead of print