The molecular phenotypes of injury, steatohepatitis, and fibrosis in liver transplant biopsies in the INTERLIVER study
Recommended Citation
Madill-Thomsen KS, Abouljoud M, Bhati C, Ciszek M, Durlik M, Feng S, Foroncewicz B, Francis I, Grąt M, Jurczyk K, Klintmalm G, Krasnodębski M, McCaughan G, Miquel R, Montano-Loza A, Moonka D, Mucha K, Myślak M, Pączek L, Perkowska-Ptasińska A, Piecha G, Reichman T, Sanchez-Fueyo A, Tronina O, Wawrzynowicz-Syczewska M, Więcek A, Zieniewicz K, and Halloran PF. The molecular phenotypes of injury, steatohepatitis, and fibrosis in liver transplant biopsies in the INTERLIVER study. Am J Transplant 2021.
Document Type
Article
Publication Date
11-15-2021
Publication Title
American journal of transplantation
Abstract
To extend previous molecular analyses of rejection in liver transplant biopsies in the INTERLIVER study (ClinicalTrials.gov #NCT03193151), the present study aimed to define the gene expression selective for parenchymal injury, fibrosis, and steatohepatitis. We analyzed genome-wide microarray measurements from 337 liver transplant biopsies from 13 centers. We examined expression of genes previously annotated as increased in injury and fibrosis using principal component analysis (PCA). PC1 reflected parenchymal injury and related inflammation in the early posttransplant period, slowly regressing over many months. PC2 separated early injury from late fibrosis. Positive PC3 identified a distinct mildly inflamed state correlating with histologic steatohepatitis. Injury PCs correlated with liver function and histologic abnormalities. A classifier trained on histologic steatohepatitis predicted histologic steatohepatitis with cross-validated AUC = 0.83, and was associated with pathways reflecting metabolic abnormalities distinct from fibrosis. PC2 predicted histologic fibrosis (AUC = 0.80), as did a molecular fibrosis classifier (AUC = 0.74). The fibrosis classifier correlated with matrix remodeling pathways with minimal overlap with those selective for steatohepatitis, although some biopsies had both. Genome-wide assessment of liver transplant biopsies can not only detect molecular changes induced by rejection but also those correlating with parenchymal injury, steatohepatitis, and fibrosis, offering potential insights into disease mechanisms for primary diseases.
Medical Subject Headings
Transplant and Abdominal Surgery
PubMed ID
34780106
ePublication
ePub ahead of print