A Pre-TACE Radiomics Model to Predict HCC Progression and Recurrence in Liver Transplantation: A Pilot Study on a Novel Biomarker

Document Type

Article

Publication Date

11-1-2021

Publication Title

Transplantation

Abstract

BACKGROUND: Despite transarterial chemoembolization (TACE) for hepatocellular carcinoma (HCC), a significant number of patients will develop progression on the liver transplant (LT) waiting list or disease recurrence post-LT. We sought to evaluate the feasibility of a pre-TACE radiomics model, an imaging-based tool to predict these adverse outcomes.

METHODS: We analyzed the pre-TACE computed tomography images of patients waiting for a LT. The primary endpoint was a combined event that included waitlist dropout for tumor progression or tumor recurrence post-LT. The radiomic features were extracted from the largest HCC volume from the arterial and portal venous phase. A third set of features was created, combining the features from these 2 contrast phases. We applied a least absolute shrinkage and selection operator feature selection method and a support vector machine classifier. Three prognostic models were built using each feature set. The models' performance was compared using 5-fold cross-validated area under the receiver operating characteristic curves.

RESULTS: Eighty-eight patients were included, of whom 33 experienced the combined event (37.5%). The median time to dropout was 5.6 mo (interquartile range: 3.6-9.3), and the median time for post-LT recurrence was 19.2 mo (interquartile range: 6.1-34.0). Twenty-four patients (27.3%) dropped out and 64 (72.7%) patients were transplanted. Of these, 14 (21.9%) had recurrence post-LT. Model performance yielded a mean area under the receiver operating characteristic curves of 0.70 (±0.07), 0.87 (±0.06), and 0.81 (±0.06) for the arterial, venous, and the combined models, respectively.

CONCLUSIONS: A pre-TACE radiomics model for HCC patients undergoing LT may be a useful tool for outcome prediction. Further external model validation with a larger sample size is required.

PubMed ID

33982917

Volume

105

Issue

11

First Page

2435

Last Page

2444

Share

COinS