Recommended Citation
Zeinali M, Lee M, Nadhan A, Mathur A, Hedman C, Lin E, Harouaka R, Wicha MS, Zhao L, Palanisamy N, Hafner M, Reddy R, Kalemkerian GP, Schneider BJ, Hassan KA, Ramnath N, and Nagrath S. High-Throughput Label-Free Isolation of Heterogeneous Circulating Tumor Cells and CTC Clusters from Non-Small-Cell Lung Cancer Patients. Cancers (Basel) 2020; 12(1).
Document Type
Article
Publication Date
1-3-2020
Publication Title
Cancers (Basel)
Abstract
(1) Background: Circulating tumor cell (CTC) clusters are emerging as clinically significant harbingers of metastases in solid organ cancers. Prior to engaging these CTC clusters in animal models of metastases, it is imperative for technology to identify them with high sensitivity. These clusters often present heterogeneous surface markers and current methods for isolation of clusters may fall short. (2) Methods: We applied an inertial microfluidic Labyrinth device for high-throughput, biomarker-independent, size-based isolation of CTCs/CTC clusters from patients with metastatic non-small-cell lung cancer (NSCLC). (3) Results: Using Labyrinth, CTCs (PanCK+/DAPI+/CD45-) were isolated from patients (n = 25). Heterogeneous CTC populations, including CTCs expressing epithelial (EpCAM), mesenchymal (Vimentin) or both markers were detected. CTCs were isolated from 100% of patients (417 +/- 1023 CTCs/mL). EpCAM- CTCs were significantly greater than EpCAM+ CTCs. Cell clusters of >/=2 CTCs were observed in 96% of patients-of which, 75% were EpCAM-. CTCs revealed identical genetic aberrations as the primary tumor for RET, ROS1, and ALK genes using fluorescence in situ hybridization (FISH) analysis. (4) Conclusions: The Labyrinth device recovered heterogeneous CTCs in 100% and CTC clusters in 96% of patients with metastatic NSCLC. The majority of recovered CTCs/clusters were EpCAM-, suggesting that these would have been missed using traditional antibody-based capture methods.
PubMed ID
31947893
Volume
12
Issue
1