An integrative proteomics approach identifies tyrosine kinase KIT as a therapeutic target for SPINK1-positive prostate cancer
Recommended Citation
Manzar N, Khan UK, Goel A, Carskadon S, Gupta N, Palanisamy N, and Ateeq B. An integrative proteomics approach identifies tyrosine kinase KIT as a therapeutic target for SPINK1-positive prostate cancer. iScience 2024; 27(3):108794.
Document Type
Article
Publication Date
3-15-2024
Publication Title
iScience
Abstract
Elevated serine peptidase inhibitor, Kazal type 1 (SPINK1) levels in ∼10%-25% of prostate cancer (PCa) patients associate with aggressive phenotype, for which there are limited treatment choices and dismal clinical outcomes. Using an integrative proteomics approach involving label-free phosphoproteome and proteome profiling, we delineated the downstream signaling pathways involved in SPINK1-mediated tumorigenesis and identified tyrosine kinase KIT as highly enriched. Furthermore, high to moderate levels of KIT expression were detected in ∼85% of SPINK1-positive PCa specimens. We show KIT signaling orchestrates SPINK1-mediated oncogenesis, and treatment with KIT inhibitor reduces tumor growth and metastases in preclinical mice models. Mechanistically, KIT signaling modulates WNT/β-catenin pathway and confers stemness-related features in PCa. Notably, inhibiting KIT signaling led to restoration of AR/REST levels, forming a feedback loop enabling SPINK1 repression. Overall, we uncover the role of KIT signaling downstream of SPINK1 in maintaining lineage plasticity and provide distinct treatment modalities for advanced-stage SPINK1-positive patients.
PubMed ID
38384854
Volume
27
Issue
3
First Page
108794
Last Page
108794