Bioenergetic Adaptations in Chemoresistant Ovarian Cancer Cells

Document Type

Article

Publication Date

8-18-2017

Publication Title

Sci Rep

Abstract

Earlier investigations have revealed that tumor cells undergo metabolic reprogramming and mainly derive their cellular energy from aerobic glycolysis rather than oxidative phosphorylation even in the presence of oxygen. However, recent studies have shown that certain cancer cells display increased oxidative phosphorylation or high metabolically active phenotype. Cellular bioenergetic profiling of 13 established and 12 patient derived ovarian cancer cell lines revealed significant bioenergetics diversity. The bioenergetics phenotype of ovarian cancer cell lines correlated with functional phenotypes of doubling time and oxidative stress. Interestingly, chemosensitive cancer cell lines (A2780 and PEO1) displayed a glycolytic phenotype while their chemoresistant counterparts (C200 and PEO4) exhibited a high metabolically active phenotype with the ability to switch between oxidative phosphorylation or glycolysis. The chemosensitive cancer cells could not survive glucose deprivation, while the chemoresistant cells displayed adaptability. In the patient derived ovarian cancer cells, a similar correlation was observed between a high metabolically active phenotype and chemoresistance. Thus, ovarian cancer cells seem to display heterogeneity in using glycolysis or oxidative phosphorylation as an energy source. The flexibility in using different energy pathways may indicate a survival adaptation to achieve a higher 'cellular fitness' that may be also associated with chemoresistance.

Medical Subject Headings

Adaptation, Biological; Antineoplastic Agents; Cell Line, Tumor; Cisplatin; Drug Resistance, Neoplasm; Energy Metabolism; Female; Gene Expression Regulation; Glucose; Glycolysis; Humans; Mitochondria; Ovarian Neoplasms

PubMed ID

28821788

Volume

7

Issue

1

First Page

8760

Last Page

8760

Share

COinS